Penggemar matematika dan materi perhitungan lain tentu sudah tak asing dengan istilah trigonometri dalam sebuah mata pelajaran. Beberapa di antaranya bahkan menghindarinya karena rumus trigonometri yang terbilang cukup sulit dipelajari. Karena itu dibutuhkan perjuangan dan kerja keras untuk dapat menaklukan salah satu tantangan terberat penggemar hitung-menghitung ini.
Tak sedikit yang menganggap materi trigonometri sebagai salah satu mata pelajaran menakutkan, tak hanya bagi orang yang tak suka matematika tetapi juga orang yang gemar hitung-menghitung. Trigonometri bukanlah ilmu pengetahuan yang menakutkan jika sudah dipelajari dengan benar, termasuk bagi siswa yang merasa tidak nyaman atau tidak suka dengan pelajaran menghitung.
Menentukan Nilai Trigonometri Berdasarkan Tabel, Rumus, Perbandingan Maupun Identitas Trigonometri
Bagian dari trigonometri antara lain Sin (Sinus), Cos (Cosinus) dan Tan (Tangen), sementara trigonometri adalah bagian dari cabang ilmu matematika. Trigonometri memiliki fokus sebagai cabang ilmu matematika pada hubungan besar sudut dan panjang sisi pada segitiga. Namun sebelum itu pahami lebih dulu apa itu trigonometri.
Dilihat secara bahasa trigonometri berasal dari bahasa Yunani, trigonon yang berarti tiga sudut dan metron yang artinya mengukur. Awal mengetahuinya tentu sangat menarik perhatian, namun perlu diketahui juga untuk menguasai cabang ilmu matematika ini diperlukan beberapa cara yang harus lebih dulu dikuasai, seperti berikut ini.
Perbandingan Trigonometri pada Segitiga Siku-siku
Dalam mempelajari trigonometri pada segitiga, perlu diketahui lebih dulu sisi-sisi pada segitiga ini dan berdasarkan letak sudutnya terbagi menjadi tiga sisi. Di antaranya sisi depan sudut, sisi samping sudut dan sisi miring atau juga disebut hipotenusa. Sisi miring terdapat di sudut depan siku segitiga, berikut perbandingan trigonometri dan hasil penjabarannya.
- Sin = b/c yang artinya sisi depan terletak pada bagian sisi miring.
- Cos = a/c yang artinya sisi samping adalah sisi miring.
- Tan = b/a yang artinya sisi depan terdapat di bagian sisi samping.
- Dipan = a/b yang artinya sisi samping sisi depan atau kebalikan dari tangen.
- Detik = c/a yang artinya sisi miring berada di sisi samping atau kebalikan dari cos.
- Cosec = c/b yang artinya sisi miring terletak di bagian depan atau kebalikan dari sin.
Nilai Perbandingan Trigonometri untuk Sudut-sudut Istimewa
Untuk menggunakan cara ini perlu memahami dulu sudut-sudut istimewa trigonometri yang terdapat dalam trigonometri, di antaranya sudut 0 derajat, 30 derajat, 45 derajat, 60 derajat dan 90 derajat. Dalam sudut-sudut istimewa ini barulah bisa digunakan untuk menentukan nilai perbandingan trigonometri, namun selain itu perlu juga melihat perbandingan lewat tabel trigonometri berikut.
Menentukan Nilai Perbandingan Sudut dan Relasi Trigonometri
Untuk mencari tahu nilai perbandingan trigonometri suatu sudut, masih bisa memanfaatkan nilai perbandingan sudut istimewa. Namun perlu diketahui dulu apa itu perbandingan trigonometri sudut berelasi, yang merupakan perluasan dari nilai trigonometri dasar yang ditentukan dari sudut segitiga siku-siku.
Sementara besar sudut segitiga siku-siku terletak hanya pada kuadran I, alasannya termasuk sudut lancip dengan ukuran 0 derajat – 90 derajat. Pada sudut lingkaran mempunyai besaran ukuran antara 0 derajat sampai 360 derajat. Kemudian sudut ini kembali dibagi menjadi empat kuadran, namun masing-masing kuadran punya rentang hingga 90 persen.
Memperhatikan letak dari sudut yang terdapat dalam kuadran berapa merupakan cara mudah dalam menentukan trigonometri dalam hal ini. Pada kuadran I, jenis semua trigonometri memiliki nilai positif, pada kuadran II, sin juga positif. Kemudian kuadran II tan bernilai positif, hingga pada kuadran IV cos bernilai positif dan untuk menentukan nilai negatif perhatikan koordinat kartesius ini.
Identitas Trigonometri
Fungi dari identitas trigonometri adalah untuk menyatakan hubungan dari fungsi trigonometri dengan fungsi lain yang terdapat di dalam trigonometri. Identitas pada trigonometri ini memunculkan kebenaran dengan tiga cara, ketiga cara ini harus dipahami dengan baik dan benar. Karena jika salah dalam penerapannya maka turunan trigonometri sulit untuk ditemukan atau muncul.
- Cara pertama dengan melakukan penyederhanaan ruas kiri memakai identitas sebelumnya. Hingga membentuk ruas yang sama dengan ruas sebelah kanan.
- Kedua dengan mengubah dan menyederhanakan ruas kanan hingga menjadi bentuk yang sama dengan ruas kiri.
- Cara ketiga adalah dengan mengubah ruas kiri dan ruas kanan ke dalam bentuk yang sama, pastikan dalam bentuk yang sama, berikut beberapa rumus identitas trigonometri.
Baca juga: Apa Itu Persamaan Kuadrat, Bentuk Umum, Macam dan Contohnya
Rumus Trigonometri
Menjadi konsep paling penting dalam segitiga, nilai pada persamaan trigonometri yang dirumuskan berdasar sebagai perbandingan panjang sisi yang ada pada segitiga siku-siku. Ada enam nilai perbandingan dalam trigonometri, di antaranya sinus (sin), cosinus (cos), tangen (tan), cosecan (cosec), secan (sec) an cotangen (cot).
Sebanyak enam nilai trigonometri ini bisa ditentukan hanya dengan perbandingan panjang sisi dengan aturan khusus. Fungsi trigonometri sangat banyak dalam kehidupan manusia, mulai dari geografi, akustik, analisis pasar, pencitraan medis, kimia hingga astronomi. Berikut rumus-rumus yang harus diketahui dalam turunan fungsi trigonometri.
-
Rumus Jumlah dan Selisih Sudut
-
Rumus Perkalian Trigonometri
-
Rumus Jumlah dan Selisih Trigonometri
Trigonometri Menurut Para Ahli
-
Al-Battani
Muhammad Ibn Jabir Ibn Sinan Abu Abdullah Al-Battani dikenal sebagai ahli astronomi dan matematika Islam yang terkenal, juga merupakan salah satu pelopor konsep modern. Perkembangan fungsi dan identitas trigonometri. Formula sinus dengan lebih jelas digunakan oleh Al-Battani ketimbang penjelasan dari orang Yunani.
-
Al-Khawarizmi
Merupakan pembuat teori mengenai algoritma, rumus trigonometri yang ditemukan Al-Khawarizmi termasuk dalam penemuan yang luar biasa. Pemakaian sin, cos, tangen dan secan diawali oleh Al-Khawarizmi dan penemuannya disumbangkan serta diaplikasikan dalam kehidupan sehari-hari manusia.
Demikian penjelasan mengenai trigonometri, mulai dari cara menemukan, fungsi, pengertian hingga rumus-rumus yang terdapat di dalam trigonometri. Sampoerna Academy memberi fasilitas lengkap untuk para siswa mulai dari tingkatan dasar hingga perguruan tinggi. Sesuai dengan penerapan kurikulum internasional di seluruh bidang.
Sampoerna Academy membawa para siswa tidak hanya belajar dari materi pelajaran di kelas, tetapi juga praktek di dalam kelas. Termasuk trigonometri, bersama tenaga pengajar yang berkualitas dan mumpuni di bidangnya.Diharapkan para siswa mampu menguasai trigonometri dan ilmu matematika lain dengan baik dan benar.
Referensi
Rumusrumus.com – Rumus Trigonometri